Advanced Calculus

- 1. Let *z* and *w* be complex numbers.
 - (a) (4 points) Prove that $|\text{Re} z| \le |z|$.
 - (b) (4 points) Prove that $|z+w| \le |z|+|w|$.
- 2. Suppose S is an ordered set with the least-upper-bound property and E is a nonempty subset of S.
 - (a) (4 points) If $\alpha = \sup E$ exists, prove that it is unique.
 - (b) (4 points) If $E \subset F \subset S$ and F is bounded above, prove that E is bounded above and

 $\sup E \leq \sup F.$

3. (a) (10 points) If $x, y \in \mathbb{R}$ and x > 0, prove that there is a positive integer *n* such that

nx > y.

(b) (10 points) If $x, y \in \mathbb{R}$ and x < y, prove that there exists a $p = \frac{m}{n} \in \mathbb{Q}$, $n \in \mathbb{N}$, such that

$$x$$

4. (8 points) For $x, y \in \mathbb{R}$, define the function $d : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ by

$$d(x, y) = \frac{|x - y|}{1 + |x - y|}.$$

Prove that d is a metric.

- 5. Let (X,d) be a metric space and let $E \subset X$.
 - (a) (8 points) If $p \in E$, prove that p is either an interior point or a boundary point of E.
 - (b) (8 points) If p is a limit point of $E \subseteq X = (X,d)$, prove that every neighborhood of p contains infinitely many points of E.
- 6. Let X = (X, d) be a metric space.
 - (a) (8 points) If $\{U_{\alpha}\}$ is a collection of open sets in X, prove that

$$\bigcup_{\alpha} U_{\alpha} \quad \text{is open in } X.$$

- (b) (8 points) If K is a compact subset of X, prove that K is closed.
- (c) (8 points) If K is a compact subset of X, prove that every infinite subset S of K has a limit point in K, i.e if S is a subset of K containing infinitely many elements, prove that $S' \cap K \neq \emptyset$.
- 7. (a) (8 points) Let *E* be a nonempty proper subset of a metric space *X*, i.e. $E \subset X$, $E \neq \emptyset$ and $E \neq X$. If *E* is a both open and closed in *X*, prove that *X* is disconnected.
 - (b) (8 points) Let *E* be a subset of \mathbb{R} . If *E* is connected, prove that *E* has the "interval property": if $x, y \in E$ and x < z < y, then $z \in E$.