1. Let z and w be complex numbers.
(a) (4 points) Prove that $|\operatorname{Re} z| \leq|z|$.
(b) (4 points) Prove that $|z+w| \leq|z|+|w|$.
2. Suppose S is an ordered set with the least-upper-bound property and E is a nonempty subset of S.
(a) (4 points) If $\alpha=\sup E$ exists, prove that it is unique.
(b) (4 points) If $E \subset F \subset S$ and F is bounded above, prove that E is bounded above and

$$
\sup E \leq \sup F .
$$

3. (a) (10 points) If $x, y \in \mathbb{R}$ and $x>0$, prove that there is a positive integer n such that

$$
n x>y .
$$

(b) (10 points) If $x, y \in \mathbb{R}$ and $x<y$, prove that there exists a $p=\frac{m}{n} \in \mathbb{Q}, n \in \mathbb{N}$, such that

$$
x<p<y \Longleftrightarrow x<\frac{m}{n}<y \Longleftrightarrow n x<m<n y .
$$

4. (8 points) For $x, y \in \mathbb{R}$, define the function $d: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ by

$$
d(x, y)=\frac{|x-y|}{1+|x-y|} .
$$

Prove that d is a metric.
5. Let (X, d) be a metric space and let $E \subset X$.
(a) (8 points) If $p \in E$, prove that p is either an interior point or a boundary point of E.
(b) (8 points) If p is a limit point of $E \subseteq X=(X, d)$, prove that every neighborhood of p contains infinitely many points of E.
6. Let $X=(X, d)$ be a metric space.
(a) (8 points) If $\left\{U_{\alpha}\right\}$ is a collection of open sets in X, prove that

$$
\bigcup_{\alpha} U_{\alpha} \quad \text { is open in } X .
$$

(b) (8 points) If K is a compact subset of X, prove that K is closed.
(c) (8 points) If K is a compact subset of X, prove that every infinite subset S of K has a limit point in K, i.e if S is a subset of K containing infinitely many elements, prove that $S^{\prime} \cap K \neq \emptyset$.
7. (a) (8 points) Let E be a nonempty proper subset of a metric space X, i.e. $E \subset X, E \neq \emptyset$ and $E \neq X$. If E is a both open and closed in X, prove that X is disconnected.
(b) (8 points) Let E be a subset of \mathbb{R}. If E is connected, prove that E has the "interval property": if $x, y \in E$ and $x<z<y$, then $z \in E$.

